DDS Tutorial -- Part Il
Hands On

Gerardo Pardo-Castellote, Ph.D.

c Gerardo Pardo-Castellote, Ph.D.
The Real-Time Co-chair OMG DDS SIG
CTO, Real-Time Innovations

Middleware Experts gerardo.pardo@rti.com

® Context: Middleware Technologies

® Overview: DDS Model & Applicability

® Details: DDS in depth

© 2009 Real-Time Innoval tions, Inc.

Context: Middleware Technologies

The concept of network middleware:
— Communications Model
— Object Model
— Architecture Model
— Protocol

© 2009 Real-Time Innoval tions, Inc.

With increased complexity...

End User Application

With increased complexity...
. @

End User Application

Network Stack

Routing protocols

File System

Kernel

Device Drivers

Operating System

1*-/41—

With increased complexity...

End User Application

HTTP Service Mail Service FTP Service

Data base

Network Stack

Routing protocols

File System

Kernel

Device Drivers

Operating System

—|¥~—/41—

... middleware becomes necessary

W %\\ 3
@L @
T — I ==A__
End User Application
Application Server Event Processing
Engine Physics Engine

Message Service

Data base | Middleware Graphics Engine

——

Network Stack Routing protocols File System

Kernel Device Drivers

Operating System & Pre-Packaged Services

— [0 < >

What is network middleware?

Middleware =

API and service layer above operating system and below
“application” code that abstracts common interaction patterns

Network Middleware =
Most popular class of middleware

Middleware used for developing distributed applications

Distributed Applications =

Those requiring interaction/communication between multiple
computers

© 2009 Real-Time Innovations, Inc.

Network Middleware Examples

DDS, RTI DDS, OpenSplice, tao-dds,

JMS, WebSphere MQ, ActiveMQ, SonigMQ
DCE/RPC, DCOM, CORBA, ICE

TIBCO RV, 29West, GigaSpaces

Bundles & ESBs:

— Application Servers (WebSphere, WebLogic, JIBOSS) Include network
middleware as a component

® NOTE: Middleware “packages” are building blocks, not stand-alone
applications like...

— Skype, gtalk, ...
— BitTorrent, eMule, ...

® Why aren’t ‘popular consumer applications built on top of
middleware?

© 2009 Real-Time Innovations, Inc.

Historical note: From Telephone to Blogs

® Why so many flavors?

e Parallels evolution of general communication patterns:
— Started with point-to-point connections
— Then request-reply services
— Then Message Queue Services
— Then Publish-Subscribe Services
— Then Data-Caching services

® Other examples:
— FTP, email -> WEB -> Blogs, RSS -> Podcasts

© 2009 Real-Time Innovations, Inc.

Middleware Communication Models

Q\Q

Point-to-Point Client-Server

Telephone, TCP File systems, Database, RPC, CORBA, DCOM
Simple, high-bandwidth Good if information is naturally centralized
Leads to stove-pipe systems Single point failure, performance bottlenecks

Publish/Subscribe Messaging Replicated Data
Magazines, Newspaper, TV Libraries, Distributed databases
Excels at many-to-many Excels at data-mining and analysis

communication
Excels at distributing time-critical
information

© 2009 Real-Time Innovations, Inc.

RMI vs Pub-Sub/Messaging/Data-Distribution

e RMI (WebServices, CORBA, DCOM) offer a remote method

abstraction
— Familiar OO programming model
— Results in a tightly-coupled system
* Forces synchronous invocations
* Imposes global object model

* Limited QoS (appearance of local method call)
* Lack robustness: cascading points of failure
— Typically built on top of TCP:
* impacts scalability and time-determinism
— Best-suited to smaller, closely-coupled systems

O—@ Topic/Queue)—)O
® Pub-Sub (Messaging Data-Distribution) offer a queue-based \O

and/or replicated-data model

— Subsystems are decoupled in time, space, and synchronization
* Contracts established by verifying QoS compatibility

— Supports a variety of transports including multicast UDP

— Better suited for high-performance and real-time

>

D D D

© 2009 Real-Time Innovations, Inc.

Queue versus Pub-Sub

® Queue 112]3 !
— Message sent to Queue
— Multiple readers can read from the queue O_@ ouele 2
— Each message is delivered to ONLY one
reader \C>
* Readers “affect each other”
— Apps:

* Job Scheduling
* Load Balancing
« Collaboration

® Pub Sub

Message Sent to Topic 1
— Multiple readers can subscribe to Topic with 11213

or without filters
— Each message delivered to ALL subscribers

that pass filter O_O ez

* Readers are decoupled \C>

— Apps: 1 ! 3

* Notifications
* Information Distribution

© 2009 Real-Time Innovations, Inc.

Pub-Sub versus Data-Distribution

® Pub-Sub
— Only messages no concept of data 1121 3
— Each message is interpreted without context 1121 3 /<>
— Messages must be delivered FIFO or according to 1121 3

some “priority” attribute O_@ Topic/Queue)_)U
— No Caching of data
— Simple QoS: filters, durability, lifespan \C>
1 3

e Data-Distribution
— Messages represent update to data-objects
— Data-Objects identify by a key
— Middleware maintains state of each object

— Objects are cached. Applications can read at
leisure 112 213

— Smart QoS >
* Ownership 'y Y Y

* History (per key) y é v
- Deadline @
— Subsumes Pub-Sub O

© 2009 Real-Time Innovations, Inc.

DDS Service Model:

Communication Model

Provides a “Global Data Space” that is accessible to all interested
applications.

— Data objects addressed by Domain, Topic and Key
— Subscriptions are decoupled from Publications

— Contracts established by means of QoS

— Automatic discovery and configuration

()
[Partlmpant]_ Pub Pub L Participant
\. J

Track,2

(N\
Participant

Sub Sub =

Track,1 Track,3

\, S

[Participant]

Global Data Space

Alarm

[Participant]_
)

© 2009 Real-Time Innovations, Inc.

DDS Service Model: Object Model

Publisher RSSUEL m Domain
PartICIpaH Participaw
g Global Data Space

DomainParticipant — Allows application to join a DDS Domain (Global Data Space)

® Topic — A string that addresses a group of objects in the Global Data Space
— Each Object is identified by a Key (some fields within the object data)

) Publisher, Subscriber — Pools resources for DataWriters and DataReaders

DataWriter — Declares intent to publish a Topic and provides type-safe operations to write/send
data

® DataReader — Declares intent to subscribe to a Topic and provides type-safe operations to
read/receive data

© 2009 Real-Time Innovations, Inc.

Other (non DDS)

Commercial Pub-Sub Models

® Older, but widely deployed
— TIBCO (RendezVous, EMS)
— IBM WebSphere MQ

® Limited deployment:
— CORBA Event Service
— CORBA Notification Service

® Emerging standards — not widely deployed
— WS-Eventing
— WS-Notification

® Proprietary Systems
— 29West
— IBM LLM

© 2009 Real-Time Innovations, Inc.

® Overview: DDS Model & Applicability

© 2009 Real-Time Innoval tions, Inc.

DDS the Standard(s)

e Data Distribution Service for Real-Time Systems
— Joint submission (RTI, THALES, OIS)
— DDS version 1.0 Adopted December 2004
— DDS version 1.1 Adopted December 2005
— DDS version 1.2 Adopted October 2006

® Interoperability wire protocol
— Joint submission (RTI and PrismTech)
— DDS-RTPS version 1.2 adopted in July 2006
— DDS-RTPS version 2.0 adopted in June 2007

— DDS-RTPS version 2.1 approved in June 2008 m
¢ Related Standards D D s
— Joint submission (Sparx, RTI, PrismTech) ‘_//

— UML Profile for DDS adopted June 2008
— DDS for light weight CCM adopted 2008

_— T
e Standards under Development = d == ‘ a
— Extensible and Dynamic Topic Types for DDS ' .l = -
— Native Language C++ API for DDS
OBJECT MANAGEMENT GROUP

© 2009 Real-Time Innovations, Inc.

) OMG Data Distribution Portal - OMG DDS PSIG Wiki - Mozilla Firefox
File Edit View History Bookmarks Tools Help

N
Ldl

€ >-C

[#] ndds43d €] ndds42e B Software B Center on Democracy, ..

[kx] Kx Systems - D...

"\
[f-]!”[ﬂ DDS
A

2H0ET WAHLSELY SRar

Navigation

Data Distribution Portal (HOME)
Data Distribution Intro
Data Distribution SI1G
DDS User's Forum
Event Calendar
Specifications
Tutorials
Whitepapers

Other Materials
FAQs

Vendors

Portal Index

Portal Search

Portal Maintenance
Portal Help

Recent Changes
SysteminfoPage

Search
Search

User

GerardoPardo
Preferences

Legout

Recently viewed pages
DataDistributionSIG
DataDistributionintro
Specification=Page

SpecificationsinProgress
OMG Data Di...tion Portal

MoinMoin Powered
Python Powered
Valid HTML 4.01

(@) || http://www.omgwiki.org/dds

3[~[»] (-]
. 3 Google C++ Style Guide =5 Search Results ¥ (38 unread) Yahoo! M... [Cracking WEP and WP... »

[kx] KxDatabase0bd... sus Object Manage... ous myOMG ovs OMG's Realtime ... ¥ (70 unread) Ya... [J OMG Data Dis... 4 -
Y
Edit (Text) || Edit (GUI) || Info || Add Link || Attachments | More Actions: vl @ @ g &

OMG Data Distribution Portal

@Ynu may discuss this page here.
The Data-Distribution Service for Real-Time Systems (DDS) is a recently-adopted @& OMG standard.

DDS is the first open international middleware standard directly addressing publish-subscribe communications for real-fime and embedded systems. DDS introduces a virtual
Global Data Space where applications can share information by simply reading and writing data-objects addressed by means of an application-defined name (Topic) and a key.
DDS features fine and extensive control of QoS parameters, including reliabilify, bandwidth, delivery deadlines, and resource limits. DDS also supports the construction of local
object models on top of the Global Data Space.

The DDS portal is maintained by the OMG Data Distribution SIG (DD5SIG). For the activities of the DDSIG and other events of interest to the community, please visit the
EventCalendar and the DDSIG page. The portal uses a Wiki to manage the content. Before making edits please visit the PortalVaintenancePage and read the
PortalUsagePaolicies. You may also want to look at the WikiCourse and at HelpContents. The WikiSandBox is a good place to experiment with editing.

Learning about DDS
A general introduction to DDS can be found in DataDistributionintro. Howtos, patterns of use of DDS and example code can be found in DataDistributionExamples.

The TutorialsPage contains presentations on DDS. More material can also be found in the WhitepapersPage and the OtherMaterialPage. The TrainingPage lists organizations
that hold regular training on DDS or can prepare it on demand.

The InformationDays contains use-case and vendor presentations OMG DDS information days. These events started in 2006 and are still on-going.
The current DDS specification is @version 1.2 Older and related specifications can be found in the SpecificationsPage.

The current DDS Interoperability Wire Protocol specification is @version 2.1 Older and related specifications can be found in the SpecificationsPage.
Visit the VendorsPage or the ProjectsPage learn about vendors, products and projects that support or use DDS.

News and Events

2008.6.26 — UML Profile for DD5 Specification. OMG Technical Meeting held in Ottawa, Canada. The OMG has recommended for adoption the UML Profile for DDS
Specification. The specification defines how UML tools can be used to model DDS systems and automatically generate supporting code. For more information visit the
SpecificationsPage.

2008.6.26 —- Extensible and Dynamic Topic Types for DDS RFP. OMG Technical Meeting held in Ottawa, Canada. The OMG has issued and RFP with the dual goals of
adding Type Extensibility to DDS Topics as well as introducing a dynamic API to allow reading and writing types for which there was no compile-time knowledge. For more
information visit SpecificationsinProgress.

2008.5.16 - Hands-On DDS Workshops. @RTI has scheduled several hands-on DDS training workshops in 2008: May 20-21, August 20-21 and Qctober 22-23. Whether you
are evaluating, planning to use, or already using the DDS standard, these two-day workshops provide an excellent opportunity to learn about the capabilities of the standard and
how to apply them to your application. For more information and to register visit @ http://www._rti_com/senices/workshops. html.

2008.5.16 — DDS Demonstration Application. @ RTl has developed a demonstration application that illustrates DDS concepts such as publish-subscribe, realtime QoS, and
data-centric design. Download the demo at € https-/fwww rti_com/mk/shapes_demo_html.

2008.3.14 — Native C++ Language DDS API RFP. OMG Technical Meeting held in Washington DC. The OMG has issued and RFP with the objective of defining a new C++
AP to DDS that takes advantage of the language features present in the ISO C++ Standard. For more information visit SpecificationsinProgress.

DDS mandated for data-distribution

® DISR (formerly JTA)

— DoD Information Technology
Standards Registry

® US Navy Open Architecture

e FCS SOSCOE

— Future Combat System —
System of System Common
Operating Environment

e SPAWAR NESI

— Net-centric Enterprise Solutions for
Interoperability

— Mandates DDS for Pub-Sub SOA

© 2009 Real-Time Innovations, Inc.

DDS Adoption —

Aerospace & Defense

E2C Hawkeye
Northtrop?
Qinetiq?
SAAB?

Raytheon
SSDS

Lockheed
AEGIS Insitu

Unmanned
Air Vehicles

DDS Adoption —
Transportation, Industrial

WiTronix
Train and vehicle
Tracking

Schneider Electric
Industrial Automation

Tokyo Japan

Traffic Control Kuka
Robotics

EU and US

Air Traffic

Management Varian
Medical Instruments

© 2009 Real-Time Innovations, Inc.

Many others

GENERALDYNAMICS lﬂ-ﬂl'll!!n-ﬂl#lr{ﬂ'/ﬂﬂ

Strength on Your Side ™

Wi rerer Spmmef vl v 'ee markiing far I . !
NOR THR OP GRUMMAN n
aytheon 4

Schneider CAE

e QPEIectrlc
Silvelr TCG ELECTRIC

Arrow

Tactical Ccvmrm nications Group,

—F .
YInfinera
A . Solutions For Optical Networks|

THALES M citl
QinetiQ wiTroNy - OMRON

Sensing tomorrow™
VARJAN smo D

medical systems INNOWATING SOLUTION: P I M C O

... The Authority on Bonds"™
A‘ LST@] M LJ‘ 1*:;._;'}‘;.:15 |I"ldl'€l

EXPERIEMCE. RESULTS. eaee

SAH ins
=1 LINCOLN LABORATORY ey /A Y/
MASSACHUSETTS INSTITUTE OF TECHNOLOGY From Scignce o Smutions I N F O D Y

aro foalaranca Mo Stancy

© 2009 Real-Time Innovations, Inc.

Main differences of DDS vs other Pub-Sub

® Flexibility and Power of the data-centric model
® Performance & Scalability

® Rich set of built-in services

® Interoperability across platforms and Languages

® Natural integration with SOA building-blocks

© 2009 Real-Time Innovations, Inc.

#1 RTI Data-Centric Model

“Global Data Space” generalizes Subject-Based Addressing
— Data objects addressed by Domainld, Topic and Key
— Domains provide a level of isolation
— Topic groups homogeneous subjects (same data-type & meaning)

— Key is a generalization of subject
< Key can be any set of fields, not limited to a “x.y.z ...” formatted string

g Data Reade
Data Writer TK@i (Subfecniata Space

Airline | Flight)gsrfnarfon Time N

Data je SWA 1023 14.05

UA 119 14:40
(—.\ — Data Reade
Data Writer | se= Sensorid Units | Location

4535 23 | CelsiusTBuit-294—

~——
Rm 13

Celsius | Buil. 221
Furn 23 Data Reade

5677

Data Writer
—

© 2009 Real-Time Innovations, Inc.

Demo: Concepts

Display Area:
Shows state of objects ® Topics
B NDDS Demo =13 — Square, Circle, Triangle
0 e d @ | -
e = 1] — Attributes
Mme)] e Data types (schemas)
e — Shape (c_ol_or, X, Y, size)
—— " « Color is instance Key
e . — Attributes
Triange A « Shape & color used for key
. Q ® QoS
rasks | Logend — Deadline, Liveliness
Output - x — Reliability, Durability
Created new shape SqYyare. E N History, Partition
) — Ownership
Ready \

Control Area:

© 2009 Real-Time Innovations, Inc.

DDS communications model

Domm Domzﬁ

Data

Data

New Writer Participant Szarlar Participant
subscriber! (Alarm”
[
[
Offered
Listener QoS Listener

)

Participants scope the global data space (domain)
Topics define the data-objects (collections of subjects)
Writers publish data on Topics

Readers subscribe to data on Topics

QoS Policies are used configure the system

Listeners are used to notify the application of events

QoS: Quality of Service

QoS Policy QoS Policy

DURABILITY USER DATA

HISTORY (per subject) TOPIC DATA

READER DATA LIFECYCLE GROUP DATA

WRITER DATA LIFECYCLE PARTITION

LIFESPAN PRESENTATION
ENTITY FACTORY DESTINATION ORDER
RESOURCE LIMITS OWNERSHIP
RELIABILITY OWNERSHIP STRENGTH
TIME BASED FILTER LIVELINESS

DEADLINE LATENCY BUDGET
CONTENT FILTERS TRANSPORT PRIORITY

© 2009 Real-Time Innovations, Inc.

Demo: Quality of Service (QoS)

Writers and readers state

Their needs ® Topics Slardeme
B NDDS Demo CEX — Square, Circle, Triangle
Tlfsﬁ = A Q) — Attributes

Publishers /* . . Data typeS (SChemaS)

Square
Cirde
Triangle

— Shape (color, X, vy, size)
« Color is instance Key

Subscribers =
Sguare . - Attrl b UteS
e A « Shape & color used for key
o ® QoS
Q — Deadline, Liveliness

Tasks | Legend

— Reliability, Durability

Cutput *
Created new shape Square. ” — History Partition
- — Ownership
Ready I
/

RTI DDS delivers

© 2009 Real-Time Innovations, Inc.

#2 Performance & Scalability

DDS was designed to support high performance

e DDS uses high-performance data-access APIs
— Read data by array (no additional copies)
— Buffer loaning for zero copy access

® DDS Supports advanced features such as:
— Message prioritization (via latency budget QoS)
— Network prioritization (via transport priority QoS)
— Source filtering (via Content-based and Time-based filters)

e DDS does not require the presence of intermediate brokers
— Applications can communicate directly peer-to-peer

e DDS Protocol supports UDP, multicast and reliable multicast
— Multicast can be used for high-performance scalability
— Use of UDP avoids head-of-line blocking
— Best efforts can be used for repetitive time-critical data

© 2009 Real-Time Innovations, Inc.

Data-Distribution and Real-Time

PN
Web Services

1
Java ><RTSJ (soft RT)><RTSJ (hard RT)>

Java/IMS >
CORBA >< RT CORBA >

Data Distribution Service / DDS

<
< >

Non-real-time Soft real-time Hard real-time Extreme real-time

YV VoV W

Messaging Technologies and Standards

Adapted from NSWC-DD OA Documentation

Latency — (Linear Scale)

DDS/JMS/Notification Service Comp

2500

X X X X X X X X
2000

——DDS X JMS —@—Notification Service
1500
1000 -
500
o ¢ ¢ ‘ ¢ ‘ ¢ ‘ Ofgf‘AACLAf“‘*O | ¢ |
4 8 16 32 64 128 256 512 10
Message Size (bytes)

Message Length (samples)

© 2Cus ~ea-1iMe Innovations, Inc.

Jitter — (Linear Scale)

DDS/CORBA Notification Service Com

100

200 80 -

180(

——DDS X JMS =@ Notification service

160(60

140(

1200

100(¢

80(¢

Standard Deviation (usecs)

20

600

Standard Deviation (usecs)

40(

200 4 8 16 32 64 128 256 512 10

Message Length (samples)

Message Length (samples)

V

© 20uy rear-11me Innovations, Inc.

DDS compared to JMS

Th{QKgB ponessthgesingle publisher
45
40 m DDS
@ 35 B JIMS
= 30
£ 25
(7))
n 20 -
8 15
= 10 -
5
O - I - I - I - I - I -_\
2 4 6 9 11 18
CPU load [%]

Platform: Linux 2.6 on AMD Athlon, Dual core, 2.2 GHz

Study on impact of WS technologies for future European ATC: XML is RTI
not suitable for European Flight Data Distribution

12

® Data size explodes 10X vs. CDR 1
— Flight Plans go from 100KB to 1MB

08
0.6 \

-Ti M
Not good for Real-Time!! __

® Communication speed drops 20X

Serialization Efficiency

—

= °
| | CDR 1SON DOM_XML SAK_XKML YAML_Block YAML_Flow

4 :& ‘. Serialization Format
A ; ! \)

120000

100000 <~

1
[
|
|
N
|
o o9 ;- . x_ Y /"
| 4 <R ¥ 60000 -
*5\1,& _ et 40000
/ . - ‘6’ 20000 -
: N g <. g

¥ i W hV;
'* g " f ISON DOM_XML SAX_XML YAML_Block YAML_Flow

K L —7 & “\-\,4_%\(:_, S Serialization Format
| s

¢

¢

O - T
RTT {nsec)

- = & = M Serialization Time M Dissemination Time Deserialization Time
Source: Christian Esposito and Domenico Cotroneo, Dario Di Crescenzo. &
SELEX-SI/Consorzio SESM/University of Naples.
“Flexible Communication Among DDS Publishers and Subscribers”),

I July 2008, Real-Time Systems Workshop, Washington, DC 7/ sEsm

Una Societa Finmeccanica

Message bus architectures

;-

Enterprise

: I\/I_essaging J
e _' -. |
Centm\ 07 c
DDS

o
o

o
()

(=)

@ Peer to Peer—&

#3 Powerful Services

Included in the Standard:

— Discovery

— Ownership, Redundancy & Failover
— Persistence (Durable) Data

— Last value and historical caches

Enabled by the DDS protocol:
— Recording service
— Routing Service

© 2009 Real-Time Innovations, Inc.

Discovery Service

® DDS provides the means for an application to discover
other participants on the Domain
— And the Topics the Publish and Subscribe
— And the Quality of Service of the remote endpoints

® A participant can determine who it is communicating
with...

— And selectively decide who to communicate with...

shapes demo discovery in_excel

© 2009 Real-Time Innovations, Inc.

Ownership and High Availability

Producer / Writer
strength=10

Producer / Writer
strength=5

Producer / Writer
strength=1

Owner determined per subject

Only extant writer with highest strength can publish a subject (or topic for
non-keyed topics)

® Automatic failover when highest strength writer:

— Loses liveliness Start d emo
— Misses a deadline
— Stops writing the subject

® Shared Ownership allows any writer to update the subject

© 2009 Real-Time Innovations, Inc.

Data Persistence

A standalone service that persists data outside of the
context of a DataWriter ——
Can be configured for:
Writer Reader
« Redundancy \ 1
e Load balancing /
Data — Global
Reader Data Space
Demo: \
1. PersistenceService /
2. ShaDeSDemO Persistence Persistence
3. Application failure Service l Service I
4. Application (ShapesDemo) re-start e anant oermanent
Storage Storage

© 2009 Real-Time Innovations, Inc.

Persistent Data Service

® Modes:

— High-performance “direct” model. Data flows in directly to subscribers and to the
persistent service

— Transactional “relay” mode persists first, then sends to subscribers

Redundant D‘E.‘ta
Writer
Service

e Fault-tolerant: Redundant services a
Direct

Mode

Ipported

Relay
Mode

Data

Writer Writer

Persistence Persistence
Service Service

Persistence Persistence
Service Service

Data
Reader

Data
Reader

Data
Reader

© 2009 Real-Time Innovations, Inc.

Data Data Data
Reader Reader Reader

Durable Writers

® Durable Writers keep their history cache
In permanent storage Application

® Upon re-starts they automatically rebuild
their history from storage

® New messages will automatically be = To Readers

appended to the history

e Readers will treat the writer re-start as a = Msg(GUID, SN)

‘temporary” disconnect Ly
® Automatically-assigned sequence momrement
numbers ensure no messages are Storage

dropped or duplicated

© 2009 Real-Time Innovations, Inc.

Durable Readers

® Durable Readers Keep information on

the messages read on permanent Application
storage

e Information uniquely identifies each r?_"’_‘f’____[______________
message :

® Upon re-start they automatically load =
information so they only request new g E —
messages and avoid duplicates Msg(GUID, SN)

® Combined with the other services it
can guarantee exactly-once delivery TS

© 2009 Real-Time Innovations, Inc.

L ast value cache

® A last-value cache is already built-in into every Writer in
the system
— Can used in combination with a Durable Writer

® A late joiner will automatically initialize to the last value

® Last value cache can be configure with history depth
greater than 1

® The Persistence Service can be used to provide a last
value cache for durable data

© 2009 Real-Time Innoval tions, Inc.

Historical cache RT/I)

® A partial historical cache is already built-in into every Writer in the
system

— Can used in combination with a Durable Writer

® The Persistence Service can be used to provide a historical cache
with larger/unlimited depth

® A late joiner will automatically initialize to the desired history
— Currently amount of history can only be specified as message count.
— Next release will also allow a age/time based specification.

® Request for historical cache is done by creating a Reader with the
desired history depth specified as a QoS

© 2009 Real-Time Innovations, Inc.

DDS Real-Time Recording Service

® Applications: ® Record high-rate data arriving
— Future analysis and in real-time
debugging

® Non-intrusive — multicast
reception

=
.

— Post-mortem
— Compliance checking

— Replay for testing and
simulation purposes

Demo. Global

1. Start RecorderService Ratspace
2. Start ShapesDemo

3. See output files 5%?;‘1?“?33&”' lE‘;‘i‘:

4. Convertto: HTML XML CSV

5. View Data;: HTML XML CSV E,aﬂ.ac Database

© 2009 Real-Time Innovations, Inc.

#4 Interoperability

e Protocol

— Interoperability Wire protocol adopted in 2006
® Languages: C/C++, Java, ADA, .NET

e Systems/Platforms/Models

distribution (publishers and subscribers): DDS
management (storage, retrieval, queries): SQL
Integration, Business process integration: WSDL

\

— Data
— Data
— ESB

Distributed
[Node J« —

Distributed
Node

© 2009 Real-Time Innovations, Inc.

_ |k

Global Data Space

DDS

———

SQL

SQL

—p>

4)
Distributed

Node

—p

4)
Distributed

\

Node

3 [oad

DDS

!

Distributed
Node

/ Real-Time

Devices

Fault Auditing &
Tolerance Recording

Tools &

Event
Processing

SOA &
Real-Time

Web Services
Portal SOAP
serice Request

(e.g. J2EE, NET)

EZB
Interactions

Existing
— Applications

Visualization

© 2009 Real-Time Innovations, Inc.

Service Logic

Relational Database Integration

Messaging Actions Relational Actions

Write() UPDATE & INSERT
Read() & Take() SELECT

Dispose() DELETE
Wait() & Listener

i 5
- —» Table T1
nglc"l;l <+ j 3 s
OO0~
—> 13 ‘
\

Event driven — The fastest way to observe database
changes!

Complex Event Engine Integration

e CEP: programmable engines used to transform “data” into “information”
® CEP engines are programmed using a derivative of SQL

® CEP engines save time: They can implement a lot of the application logic:
— Classification, Correlation, Aggregation, Filter, Cleansing, Pattern Detection, etc.

e DDS is the perfect ‘data’ and ‘information’ pipe for CEP engines
— Use high-speed data streams (1,000-1,000,000 msg/sec)
— Require latency measured in sub-milliseconds
— Demand access to events from a heterogeneous systems

o E__g Dashboards
SRR —
é:;;\\ i ‘ Applications
\‘_\
‘ g Alerts

LA

CEP Engine

© 2009 Real-Time Innovations, Inc.

Web-Enabled DDS (upcoming spec)

DDS-RTPS

Web i Hi-Performance
Enabled ! Embedded
Protocols : Real-Time Bl oDs Demo . BEE
! A
HTTP ; o
| EE_E e
rl : o
Generic AFnE HE E _— Dua;t egen N
Web Client E Created new shape Square. E
(.NET / Java) : s

WebEnabled —p

! Global
DDS

Data Space
RTI, DDS, Real-Time

v\fOAP I
—

‘\p [DDSParticipant]

@
DDSParticipant
[]

IONA IONA Artix Transports
Web Client| SOAP, JMS, IIOP

© 2009 Real-Time Innovations, Inc.

® Details: DDS in depth

© 2009 Real-Time Innoval tions, Inc.

Do-yourself Message-Centric System

® Model
— 1-1, FIFO

® Applications coupled in Lifespan & Content
— Both must be present simultaneously
— Everything sent is received

® Excellent performance

® Doesn'’t scale
— To large-scale systems
— To loosely-coupled systems

()) 4 R
[Apphcanon] [Application}
\ Queue co-located with each application /
| e

© 2009 Real-Time Innovations, Inc.

Middleware-based Message-Centric Systems (JMS)

e Model
— Broker-based, n=»n communication
— Independent messages, No state

e Coupling
— Not coupled in Lifespan
— Coupled in Order and Content (presentation)

® Worse performance

® Better scalability

[Application} R m [Application}

Appllcat|on AQUGUGS [ApplicationJ

Queue per message kind

© 2009 Real-Time Innovations, Inc.

Do-yourself Data-Centric System

® Model
Shared/replicated structured data/state

Asynchronous, Selective sharing

® Coupling:
Coupled in Lifespan, Decoupled in Presentation & Content

® Excellent performance & scalability

2 (o 2

[Application] [Application}
Replication
—_— . Mechanism
— = ﬁ\ —
== =

_ J . 2/

© 2009 Real-Time Innovations, Inc.

Middleware-based Data-Centric Systems (DDS)

Shared data-space, shared state
Asynchronous communication

Decoupled in Lifespan, Content, presentation
Excellent performance & scalability

Subsumes Message-Centric via QoS

[Application} [Application]
I —— i e 4
| e

DDS Data-Centric Model

Provides a virtual “Global Data Space” that is accessible to all
Interested applications.
— Data objects addressed by Domainlid, Topic and Key
— Subscriptions are decoupled from Publications
— Contracts established by means of QoS
— Automatic discovery and configuration

Global
Data Space

Data Reade

Data Reade
Data Reade

estination

Airtine | Flight

SWA | 023 X
UA | 119

Data Writer ToR&Y

Data Writer | s= Sensorid Nomits_ | Location
4535 23 Celsius | BuTZs4——
—
Rm 13

Buil. 221
Furn 23

5677 Celsius

Data Writer
—

© 2009 Real-Time Innovations, Inc.

DDS Global Data

® Address in Global Data Space = (Domainid, Topic, Key)

Data Writer

SEEE—
Data Writer | s=

———

Each topic corresponds to a multiple data instances with a common schema
A DataWriter can write to any instances of a single topic

Multiple DataWriters may write to the same instance

A DataReader receives updates from all instances of a single topic

Multiple DataReaders may read from the same instances & values

Global
Data Space

Data Reade
Data Reade

Destination

PDX
LAX

Airline
SWA
UA

Flight
023
119

Sensorld Units Location

4535 23 Celsius | Buil. 234

M Rm 13
rﬁ 5677 Celsius | Buil. 221
; Furn 23 Data Reade
Data Writer

© 2009 Real-Time Innovations, Inc.

DDS Global Data: Domains

® Address in Global Data Space = (Domainid, Topic, Key)
Each Domain is identified by the value of the domainld
Each Domain is a separate Global Data Space

© 2009 Real-Time Innovations, Inc.

The same Topic hame can mean different things in different domains

The same Topic can have different Types on each Domain
An application may join multiple Domains
Domains can be used for isolation, scalability, modularity

j.-_, I_g

'=e

[domainld = 1]\

Application
Process
accessing

multiple
Global data
Spaces

Participant
readiwrite
? ‘ Participant
DDS (|9 .@
Global
Participant Data Space
A 7
210
Participant [domainld = 2] \
|9 ‘ readfwrite
- Participant

Participant
p o

gl

DDS
Global
Data Space

l

9]
Vjs Q

Example: Publication

// Entities creation
DomainParticipant participant =
TheParticipantFactory->create participant(
domain_i1d, participant _qos, participant listener);

Publisher publisher = domain->create publisher(
publisher _gos, publisher_listener);

Topic topic = domain->create_ topic(
“MyTopic”, “Text”, topic_qos, topic_listener);

DataWriter writer = publisher->create datawriter(
topic, writer _qgos, writer_listener);

TextDataWriter twriter = TextDataWriter::narrow(writer);

TextStruct my_ text;
twriter->write(&my_ track);

© 2009 Real-Time Innovations, Inc.

Example: Subscription

// Entities creation
Subscriber subscriber = domain->create_ subscriber(
subscriber _gos, subscriber_listener);

Topic topic = domain->create topic(
“Track™”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create datareader(
topic, reader _gos, reader_listener);

// Use listener-based or wailt-based access

© 2009 Real-Time Innovations, Inc.

How to Get Data? (Listener-Based)

// Listener creation and attachment
Listener listener = new MyListener();
reader->set_listener(listener);

// Listener code
MyListener::on_data available(DataReader reader)

{
TextSeq received data;
SamplelnfoSeq sample i1nfo;
TextDataReader reader = TextDataReader::narrow(reader);
treader->take(&received data, &sample info, ..)
// Use received data
printf(““Got: %s\n”, received dataJO]->contents);
}

© 2009 Real-Time Innovations, Inc.

How to Get Data? (WaitSet-Based)

// Creation of condition and attachement

Condition Too condition =
treader->create_readcondition(..);

waitset->add _condition(foo _condition);

// Wait
ConditionSeq active_conditions;
waitset->wairt(&active _conditions, timeout);

// Wait returns when there i1s data (or timeout)
FooSeq received data;
SamplelnfoSeq sample info;

treader->take w_condition
(&received data,
&sample_ info,
foo_condition);

// Use received data
printf(“Got: %s\n”, received data[0O]->contents);

Listeners, Conditions & WaitSets

Middleware must notify user application of relevant events:
— Arrival of data

— But also:
* QoS violations
« Discovery of relevant entities

— These events may be detected asynchronously by the middleware
... Same issue arises with POSIX signals

DDS allows the application to choice:

— Either to get notified asynchronously using a Listener
— Or to wait synchronously using a WaitSet

Both approaches are unified using STATUS changes

© 2009 Real-Time Innovations, Inc.

Status Changes

DDS defines
® A set of enumerated STATUS
® The statuses relevant to each kind of DDS Entity

DDS entities maintain a value for each STATUS

STATUS Entity

INCONSISTENT_TOPIC Topic
DATA ON_READERS Subscriber
LIVELINESS_CHANGED DataReader
REQUESTED_DEADLINE_MISSED DataReader .
struct LivelinessChangedStatus
RUQESTED_INCOMPATIBLE_QOS DataReader {
DATA_AVAILABLE DataReader long active_count;
S oo long inactive_count;

- DataReader long active_count_change;
SUBSCRIPTION_MATCH DataReader long inactive_count_change;
LIVELINESS_LOST DataWriter J
OFFERED_INCOMPATIBLE_QOS DataWriter
PUBLICATION_MATCH DataWriter

© 2009 Real-Time Innovations, Inc.

Listeners, Conditions and Statuses

A DDS Entity is associated with:
A listener of the proper kind (if attached)
A StatusCondition (if activated)

The Listener for an Entity has a separate operation for each of the relevant

statuses
STATUS Entity Listener operation
INCONSISTENT_TOPIC Topic on_inconsistent_topic
DATA_ON_READERS Subscriber on_data_on_readers
LIVELINESS_CHANGED DataReader on_liveliness_changed
REQUESTED_DEADLINE_MISSED DataReader on_requested_deadline_missed
RUQESTED_INCOMPATIBLE_QOS DataReader on_requested_incompatible_qos
DATA_AVAILABLE DataReader on_data_available
SAMPLE_LOST DataReader on_sample_lost
SUBSCRIPTION_MATCH DataReader on_subscription_match
LIVELINESS_LOST DataWriter on_liveliness_lost
OFFERED_INCOMPATIBLE_QOS DataWriter on_offered_incompatible_qos
PUBLICATION_MATCH DataWriter on_publication_match

Listeners & Condition duality

® A StatusCondition can be selectively activated to respond to
any subset of the statuses

® An application can wait changes in sets of StatusConditions
using a WaitSet

® Each time the value of a STATUS changes DDS
— Calls the corresponding Listener operation
— Wakes up any threads waiting on a related status change

DDS
Status Change Entity

© 2009 Real-Time Innovations, Inc.

Hands-on Example (C++)

Type Four easy steps:
Definition 1. Define your data
2. Create your project
MyType 3. Build
4. Run: publisher subscriber

—
MyType.sin rtiddsgen/ l

MyType.h /

MyTypeSupport.c MyTypePublisher.cpp A_UX'
File Browser
MyTypeSubscriber.cpp Console

compiler / \

[PubHsheLexe} [Subscnbenexe}

© 2009 Real-Time Innovations, Inc.

Components/Mechanics of the GDS

— { GDS Definition
_____________________________ Discovery
Application [Application]
X
Listener ‘ 4 Listener
Protocol
Cache

Management

© 2009 Real-Time Innovations, Inc.

Components/Mechanics of the GDS

[Application}
A

Listener

© 2009 Real-Time Innovations, Inc.

Designing a Data-Centric System

Define/Model the Global Data Space
Configure the Cache Management
Configure Discovery

Configure the Protocol

® Configure/Use hooks for

— Fault detection
— Controlled access

© 2009 Real-Time Innoval tions, Inc.

Global Data Space / Global State

® |dentify the number of domains

® Domain Information model
— Topics
— Types
— Keys
— Ownership

© 2009 Real-Time Innoval tions, Inc.

N1 App1l
Pub/Sub
(A,B/C,D)

N2 App 2
Subscribe

(®)

N3 App 3
Pub/Sub
(E,F/A,C)

Domain

Domain and Domain Participants

N4 App 4
Pub/Sub
(D/IC,E,F)

N4 App 5
Publish

(®)

NS App 6
Subscribe
(B,C)

Single ‘Domain’ System

» Container for
applications that
want to communicate

» Applications can
join or leave a
domain in any order

* New Applications
are “Auto-Discovered”

* An application that
has joined a domain
is also called a

“Domain Participant”

Domain and Domain Participants

Using Multiple domains for Scalability, Modularity & Isolation

Node 1-App 1 Node 4 - App 1
Pub/Sub Domain A Pub/Sub

Node 2 - App 1 Node 4 - App 2
Subscribe Publish

Domain B

Node 3-App 1 Node 5-App 1
Pub/Sub \ Subscribe
Node 5-App 2 [— - e Node 6-App 1
Pub/Sub Pub/Sub

demo domain 0 Multiple Domain System qemo domain 1

Topics & Datatypes, Keys & Subjects

Topic “MarketData”

Data-type (name-type-value pairs)

A —
-~ oo~
source type symbol Exchange volume bid ask
OPRA IBM NYSE 200000 118.30 118.36
OPRA AAPL NASDAQ 171.20 171.28
RTFP EQ
— 7 \— _/
Y Y
Key fields - Subject Additional fields (payload)
Topic “OrderEntry”
Exchange | type Symbol | Order num number limit stop expiration
NYSE BUY IBM 11956 500 120 - DAY
NYSE BUY IBM 11957 1000 124.5 124 DAY
NASDAQ SELL | AAPL 11958 400 - 160 DAY
- _\
V Y

© 2009 Real-Time Innovatiolis, inc.

demo filters

QoS: Ownership

Specifies whether more than one DataWriter can
update the same instance of a data-object

Ownership = EXCLUSIVE Ownership = SHARED
“Only highest-strength “All data-writers can
data writer can update each update data-
each data-instance” instance”

Data Data
Writer Writer

Data
Writer

Provides fast, robust, transparent replacement for fail-
over and/or take-over.

© 2009 Real-Time Innovations, Inc.

demo _ownership [

QoS: Ownership Strength

Specifies which DataWriter is allowed to update the
values of data-objects

OWNERSHIP_STRENGTH

“Integer to specify the
JPtag ORDER N strength of an instance”
P - 7’ RS

- - /7 \\
(Strength=1 Y~ (Strength=4) / Domain
Participant
Data Data “RIGHT”
Writer Writer 11 T
“LEFT” “RIGHT” LEFT
Publisher Publisher Subscriber
N Y

)

Note: Only applies to Topics with Ownership:ExT\

Configure the Cache Management

¢ Cache State Contegt

— History [Writer I
- Lifespan | Application

— Persistence i
— Resources) ’

® Reader Cache View
— Partitions >
— Content-Based Filter
— Time-Based Filter)

— Order i
Reader !
[Applicationl

.
.
P

.
“‘
.
Pt
.
.

“‘ -

“‘ *

. o

.
.
.
.
.
.
.
.
.

© 2009 Real-Time Innovations, Inc.

QoS: History — Last x or All

KEEP_ALL: KEEP_LAST: “depth” integer for
Publisher: keep all until delivered the number of samples to keep at
Subscriber: keep each sample until the any one time

application processes that instance _
demo history

=

e

Data Data
Writer Writer

e 7

QoS: Lifespan lifespan_sub

User can set lifespan duration
Manages samples in
the history queues, attached to each
Sample

Data Data - /\
Writer Reader
B3 [
sS4
| S5 Perm.
Publisher Subscriber - S6 Storage
ST

77

Content-Based Filtering

Instance 1 Value = 249
Instance 2 Value = 230

Instance 3 Value = 275

Content Filtered
Topic

Instance 4 Value = 262

_ “Filter Expression ”
Instance 5 value =258 Ex. Value > 260
Instance 6 Value = 261

Instance 7 Value = 259

The Filter Expression and Expression
Params will determine which instances of the
Topic will be received by the subscriber.

content filter example

© 2009 Real-Time Innovations, Inc.

Subscriptions: By Topic, Subject, Content

Topic: “Market Data”

Type | Exchange Volume Bid Ask

* | J

. | Payload
Field Source | Symbol

*

Value L

Topic: “Order Entry”

_ | | Payload
Field (Symbol . Type 1Exchangel orqerNumber Symbol Orderkind — Stop Limit 1
Value L * 1 * ' NYSE & J
N I I _— 4
g

Subject Filter (for a Reader) content filter example

Topic: “Market Data”

Field [Source E Symbol E Type E Exchange Payload 1
Value LREUTERS i * 1 EQ ! NYSE Volume > x, Ask <y J
— I I I -, e’
. ol .
Subject Filter (for a Reader) Payload Filter (for a Reader)

© 2009 Real-Time Innovations, Inc.

QoS: TIME BASED FILTER
time filter example

“minimum_separation”:
/

2 Data Reader does not want to receive data

~

Domain // “Yaster than the min_separation time
Participant . S~.

Discarded
samples

€ >

minimum separation Data Samples

© 2009 Real-Time Innovations, Inc.

Cache Management in Action

Bl NDDS Demo
O &2 3

Tasks

Publishers

Square
Cirde
Triangle

Subscribers

Sguare
Cirde
Triangle

Tasks | Legend

Output

BE1ES

Created new shape Square.

4
[0] =

Ready

© 2009 Real-Time Innovations, Inc.

demo

Topics
— Square, Circle, Triangle
— Attributes

Data types (schemas)
— Shape (color, X, vy, size)
« Color is instance Key
— Key
« Color field used for key

QoS
— History, Partition

— Time-Based Filter
— Content-Based Filter

Configure the Protocol

® Discovery \

o Reliability [Writer }_,
o Applicati !

® Liveliness et i

® Flow Control

® Asynchronous write
e Network Configuration >

— Enabled Transports +
transport properties

— Multicast addresses | .
— Transport Priority |

® OS settings
— Threads

— Memory Reader
j Application

© 2009 Real-Time Innovations, Inc.

Tunable Reliability Protocol

e Configurable AckNack reply times @ Performance can be tracked by

to eliminate storms senders and recipients
_ — Configurable high/low watermark,
® Fully configurable to bound Buffer full
latency and overhead

_ ® Flexible handling of slow
— Heartbeats, delays, buffer sizes recipients

— Dynamically remove slow
receivers

e D
Data Reliable Data
Writer «Guaranteed Reader
Ordered Delivery
bublisher «“Best effort” also -
supported
_ Y,
S5—S4 S2 s1
NACK #6
S6 . l

Best Efforts

© 2009 Real-Time Innovations, Inc.

Confirmed Reliability |

No packet loss

o ——— u
01 -
ey 02
02
| [—— 03
04 04, HB 03
ACK 1-4 ’ 04
5| [05
- | 05
6] ——— 06 |
06
o| —————— o
07
08 ACK 1-8 08, HB

08

© 2009 Real-Time Innovations, Inc.

Confirmed Reliability i

Some packet loss

01 I W
01 o1
ey 02
03 03 02
04 0> ©)
4, HB
ACK 1-2, NACK 3 : 7 oa
05| [= 05
M 05
| 06
06
07 e o) S
07
08 ACK 1-8 08, HB

08

© 2009 Real-Time Innovations, Inc.

Configure Notifications, Fault Detection &

Management

Writer —_ —
\ Application — =

® Listeners U =

® Deadline Qos =

® Liveliness Qos >

® Built-in Readers ——— E

® Notification of matching ;E = |
J VA —

Reader —E
Application — |

© 2009 Real-Time Innovations, Inc.

QoS: Deadline

7
e
e
e
7

" Commits
to provide
data each
deadline
period.

Data
Writer

Publisher

deadline example

Failed to
get data

Data

Listener Reader

Expects data every
deadline period.

Subscriber

deadline

© 2009 Real-Time Innovations, Inc.

i —— :'_'.'."")
QoS: Liveliness — liveliness example er

Type and Duration

Type: Controls who is responsible for issues of ‘liveliness packets’
AUTOMATIC = Infrastructure Managed

MANUAL = Application Managed Kill apps

Failed to
renew
lease

Data
Writer

Listener

Publisher Subscriber

J \

lease duration

LP LP s
\ Liveliness Message

Summary

® Designing a fault-tolerant high-performance distributed
system Is not a simple task

® A powerful middleware framework can provide a lot of
value and help you focus on the business logic

® The middleware can save you a lot of time and effort.
— Itis worth learning how to use its power!

© 2009 Real-Time Innoval tions, Inc.

