
The Real-Time
Middleware Experts

DDS Tutorial -- Part II
Hands On

Gerardo Pardo-Castellote, Ph.D.

Gerardo Pardo-Castellote, Ph.D.
Co-chair OMG DDS SIG
CTO, Real-Time Innovations
gerardo.pardo@rti.com

© 2009 Real-Time Innovations, Inc.

Agenda

Context: Middleware Technologies

Overview: DDS Model & Applicability

Details: DDS in depth

© 2009 Real-Time Innovations, Inc.

Context: Middleware Technologies

The concept of network middleware:
– Communications Model
– Object Model
– Architecture Model
– Protocol

© 2009 Real-Time Innovations, Inc.

With increased complexity…

End User Application

© 2009 Real-Time Innovations, Inc.

With increased complexity…

Kernel

Network Stack File System

Operating System
Device Drivers

End User Application

Routing protocols

© 2009 Real-Time Innovations, Inc.

With increased complexity…

Kernel

Network Stack File System

Operating System

Data base

Device Drivers

End User Application

HTTP Service Mail Service

Routing protocols

FTP Service

© 2009 Real-Time Innovations, Inc.

… middleware becomes necessary

Kernel

Network Stack File System

Operating System & Pre-Packaged Services

Data base

Message Service

Application Server

Device Drivers

Physics Engine

Graphics Engine

End User Application

Middleware

Event Processing
Engine

HTTP Service Mail Service

Routing protocols

FTP Service

© 2009 Real-Time Innovations, Inc.

What is network middleware?

Middleware =

API and service layer above operating system and below
“application” code that abstracts common interaction patterns

Network Middleware =

Most popular class of middleware

Middleware used for developing distributed applications

Distributed Applications =

Those requiring interaction/communication between multiple
computers

© 2009 Real-Time Innovations, Inc.

Network Middleware Examples

DDS, RTI DDS, OpenSplice, tao-dds,
JMS, WebSphere MQ, ActiveMQ, SoniqMQ
DCE/RPC, DCOM, CORBA, ICE
TIBCO RV, 29West, GigaSpaces
Bundles & ESBs:
– Application Servers (WebSphere, WebLogic, JBOSS) Include network

middleware as a component

NOTE: Middleware “packages” are building blocks, not stand-alone
applications like…
– Skype, gtalk, …
– BitTorrent, eMule, …

Why aren’t ‘popular’ consumer applications built on top of
middleware?

© 2009 Real-Time Innovations, Inc.

Historical note: From Telephone to Blogs

Why so many flavors?

Parallels evolution of general communication patterns:
– Started with point-to-point connections
– Then request-reply services
– Then Message Queue Services
– Then Publish-Subscribe Services
– Then Data-Caching services

Other examples:
– FTP, email -> WEB -> Blogs, RSS -> Podcasts

© 2009 Real-Time Innovations, Inc.

Point-to-Point
Telephone, TCP
Simple, high-bandwidth
Leads to stove-pipe systems

Client-Server
File systems, Database, RPC, CORBA, DCOM
Good if information is naturally centralized
Single point failure, performance bottlenecks

Publish/Subscribe Messaging
Magazines, Newspaper, TV
Excels at many-to-many
communication
Excels at distributing time-critical
information

Middleware Communication Models

Replicated Data
Libraries, Distributed databases
Excels at data-mining and analysis

© 2009 Real-Time Innovations, Inc.

RMI (WebServices, CORBA, DCOM) offer a remote method
abstraction

– Familiar OO programming model
– Results in a tightly-coupled system

Forces synchronous invocations
Imposes global object model
Limited QoS (appearance of local method call)
Lack robustness: cascading points of failure

– Typically built on top of TCP:
impacts scalability and time-determinism

– Best-suited to smaller, closely-coupled systems

Pub-Sub (Messaging Data-Distribution) offer a queue-based
and/or replicated-data model

– Subsystems are decoupled in time, space, and synchronization
Contracts established by verifying QoS compatibility

– Supports a variety of transports including multicast UDP
– Better suited for high-performance and real-time

RMI vs Pub-Sub/Messaging/Data-Distribution

Topic/Queue

© 2009 Real-Time Innovations, Inc.

Queue versus Pub-Sub

Queue
– Message sent to Queue
– Multiple readers can read from the queue
– Each message is delivered to ONLY one

reader
• Readers “affect each other”

– Apps:
• Job Scheduling
• Load Balancing
• Collaboration

Pub Sub
– Message Sent to Topic
– Multiple readers can subscribe to Topic with

or without filters
– Each message delivered to ALL subscribers

that pass filter
• Readers are decoupled

– Apps:
• Notifications
• Information Distribution

Queue

Topic/Queue

1

2

3

1

1 2 3

1 2 3
1 2 3

1 2 3

1 3

© 2009 Real-Time Innovations, Inc.

Pub-Sub versus Data-Distribution
Pub-Sub

– Only messages no concept of data
– Each message is interpreted without context
– Messages must be delivered FIFO or according to

some “priority” attribute
– No Caching of data
– Simple QoS: filters, durability, lifespan

Data-Distribution
– Messages represent update to data-objects
– Data-Objects identify by a key
– Middleware maintains state of each object
– Objects are cached. Applications can read at

leisure
– Smart QoS

• Ownership
• History (per key)
• Deadline

– Subsumes Pub-Sub

Topic/Queue

1

1 2 3
1 2 3

1 2 3

1 3

1 2 3 1 2 3 1 2 3

1 2 2 3

© 2009 Real-Time Innovations, Inc.

DDS Service Model:
Communication Model

Provides a “Global Data Space” that is accessible to all interested
applications.
– Data objects addressed by Domain, Topic and Key
– Subscriptions are decoupled from Publications
– Contracts established by means of QoS
– Automatic discovery and configuration

Global Data Space

Participant Pub ParticipantPub

Sub Participant
Sub

Participant Pub Alarm

Track,2

Track,1 Track,3

Participant
Sub

© 2009 Real-Time Innovations, Inc.

DDS Service Model: Object Model

Global Data Space

Offered
QoS

Data
Writer

Publisher

Topic

Domain
Participant

Requested
QoS

Subscriber

Data
Reader

Domain
Participant

Topic

DomainParticipant – Allows application to join a DDS Domain (Global Data Space)
Topic – A string that addresses a group of objects in the Global Data Space

– Each Object is identified by a Key (some fields within the object data)

Publisher, Subscriber – Pools resources for DataWriters and DataReaders
DataWriter – Declares intent to publish a Topic and provides type-safe operations to write/send
data
DataReader – Declares intent to subscribe to a Topic and provides type-safe operations to
read/receive data

© 2009 Real-Time Innovations, Inc.

Other (non DDS)
Commercial Pub-Sub Models

Older, but widely deployed
– TIBCO (RendezVous, EMS)
– IBM WebSphere MQ

Limited deployment:
– CORBA Event Service
– CORBA Notification Service

Emerging standards – not widely deployed
– WS-Eventing
– WS-Notification

Proprietary Systems
– 29West
– IBM LLM

© 2009 Real-Time Innovations, Inc.

Agenda

Context: Middleware Technologies

Overview: DDS Model & Applicability

Details: DDS in depth

© 2009 Real-Time Innovations, Inc.

History: DDS the Standard(s)
Data Distribution Service for Real-Time Systems

– Joint submission (RTI, THALES, OIS)
– DDS version 1.0 Adopted December 2004
– DDS version 1.1 Adopted December 2005
– DDS version 1.2 Adopted October 2006

Interoperability wire protocol
– Joint submission (RTI and PrismTech)
– DDS-RTPS version 1.2 adopted in July 2006
– DDS-RTPS version 2.0 adopted in June 2007
– DDS-RTPS version 2.1 approved in June 2008

Related Standards
– Joint submission (Sparx, RTI, PrismTech)
– UML Profile for DDS adopted June 2008
– DDS for light weight CCM adopted 2008

Standards under Development
– Extensible and Dynamic Topic Types for DDS
– Native Language C++ API for DDS

© 2009 Real-Time Innovations, Inc.

© 2009 Real-Time Innovations, Inc.

DDS mandated for data-distribution

DISR (formerly JTA)
– DoD Information Technology

Standards Registry

US Navy Open Architecture

FCS SOSCOE
– Future Combat System –

System of System Common
Operating Environment

SPAWAR NESI
– Net-centric Enterprise Solutions for

Interoperability
– Mandates DDS for Pub-Sub SOA

22© 2009 Real-Time Innovations, Inc.

Lockheed
AEGIS Insitu

Unmanned
Air Vehicles

Boeing
Future Combat
Systems

E2C Hawkeye

Raytheon
SSDS

Boeing
AWAKS

DDS Adoption –
Aerospace & Defense

Northtrop?
Qinetiq?
SAAB?

23© 2009 Real-Time Innovations, Inc.

WiTronix
Train and vehicle
Tracking

Tokyo Japan
Traffic Control

Schneider Electric
Industrial Automation

Kuka
Robotics

Varian
Medical Instruments

DDS Adoption –
Transportation, Industrial

EU and US
Air Traffic
Management

© 2009 Real-Time Innovations, Inc.

Many others

© 2009 Real-Time Innovations, Inc.

Main differences of DDS vs other Pub-Sub

Flexibility and Power of the data-centric model

Performance & Scalability

Rich set of built-in services

Interoperability across platforms and Languages

Natural integration with SOA building-blocks

© 2009 Real-Time Innovations, Inc.

#1 RTI Data-Centric Model

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Data Object

Key (subject)Topic

“Global Data Space” generalizes Subject-Based Addressing
– Data objects addressed by DomainId, Topic and Key
– Domains provide a level of isolation
– Topic groups homogeneous subjects (same data-type & meaning)
– Key is a generalization of subject

• Key can be any set of fields, not limited to a “x.y.z …” formatted string

© 2009 Real-Time Innovations, Inc.

Demo: Concepts

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

• Color is instance Key
– Attributes

• Shape & color used for key

QoS
– Deadline, Liveliness
– Reliability, Durability
– History, Partition
– Ownership

Control Area:
Allows selection of objects and QoS

Display Area:
Shows state of objects

Start demo

© 2009 Real-Time Innovations, Inc.

Data
Reader
“Alarm”

Domain
Participant

Data
Writer

“Alarm”

Domain
Participant

DDS communications model

Participants scope the global data space (domain)

Topics define the data-objects (collections of subjects)

Writers publish data on Topics

Readers subscribe to data on Topics

QoS Policies are used configure the system

Listeners are used to notify the application of events

Listener
Offered
QoS Listener

Got new
data

Requested
QoS

New
subscriber!

© 2009 Real-Time Innovations, Inc.

QoS: Quality of Service

TRANSPORT PRIORITYCONTENT FILTERS

PRESENTATIONLIFESPAN

DESTINATION ORDERENTITY FACTORY

LATENCY BUDGETDEADLINE

LIVELINESSTIME BASED FILTER

OWNERSHIP STRENGTHRELIABILITY

OWNERSHIPRESOURCE LIMITS

PARTITIONWRITER DATA LIFECYCLE

GROUP DATAREADER DATA LIFECYCLE

TOPIC DATAHISTORY (per subject)

USER DATADURABILITY
QoS PolicyQoS Policy

© 2009 Real-Time Innovations, Inc.

Demo: Quality of Service (QoS)

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

• Color is instance Key
– Attributes

• Shape & color used for key

QoS
– Deadline, Liveliness
– Reliability, Durability
– History, Partition
– Ownership

RTI DDS delivers

Writers and readers state
Their needs Start demo

© 2009 Real-Time Innovations, Inc.

#2 Performance & Scalability

DDS was designed to support high performance

DDS uses high-performance data-access APIs
– Read data by array (no additional copies)
– Buffer loaning for zero copy access

DDS Supports advanced features such as:
– Message prioritization (via latency budget QoS)
– Network prioritization (via transport priority QoS)
– Source filtering (via Content-based and Time-based filters)

DDS does not require the presence of intermediate brokers
– Applications can communicate directly peer-to-peer

DDS Protocol supports UDP, multicast and reliable multicast
– Multicast can be used for high-performance scalability
– Use of UDP avoids head-of-line blocking
– Best efforts can be used for repetitive time-critical data

© 2009 Real-Time Innovations, Inc.

Data-Distribution and Real-Time

Non-real-time Soft real-time Hard real-time Extreme real-time

Java/RMIJava/JMS

CORBA

MPI

Java RTSJ (soft RT) RTSJ (hard RT)

Web Services

M
es

sa
gi

ng
 T

ec
hn

ol
og

ie
s

an
d

St
an

da
rd

s
M

es
sa

gi
ng

 T
ec

hn
ol

og
ie

s
an

d
St

an
da

rd
s

Data Distribution Service / DDS

RT CORBA

Adapted from NSWC-DD OA Documentation

© 2009 Real-Time Innovations, Inc.

Latency – (Linear Scale)

DDS/JMS/Notification Service Comparison - Latency

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

DDS JMS Notification Service

Message Length (samples)

Adapted from Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

© 2009 Real-Time Innovations, Inc.

Jitter – (Linear Scale)

DDS/JMS/CORBA Notification Service Comparison - Jitter

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

St
an

da
rd

 D
ev

ia
tio

n
(u

se
cs

)

DDS JMS Notification service

Message Length (samples)

Source: Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

DDS/CORBA Notification Service Comparison - Jitter

0

20

40

60

80

100

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

St
an

da
rd

 D
ev

ia
tio

n
(u

se
cs

)

DDS JMS Notification service

Message Length (samples)

© 2009 Real-Time Innovations, Inc.

DDS compared to JMS

Throughput with a single publisher

0
5

10
15
20
25
30
35
40
45

2 4 6 9 11 18

CPU load [%]

[1
00

0'
s

sa
m

pl
e/

s]

DDS
JMS

Platform: Linux 2.6 on AMD Athlon, Dual core, 2.2 GHz

(2KB messages)

© 2009 Real-Time Innovations, Inc.

Study on impact of WS technologies for future European ATC: XML is
not suitable for European Flight Data Distribution

Data size explodes 10X vs. CDR
– Flight Plans go from 100KB to 1MB

Communication speed drops 20X

Not good for Real-Time!!

Source: Christian Esposito and Domenico Cotroneo, Dario Di Crescenzo.

SELEX-SI/Consorzio SESM/University of Naples.

“Flexible Communication Among DDS Publishers and Subscribers”

July 2008, Real-Time Systems Workshop, Washington, DC

© 2009 Real-Time Innovations, Inc.

Message bus architectures

Centralized Clustered

Federated Peer to Peer

DDS

JMS Enterprise
Messaging

Enterprise
Messaging

© 2009 Real-Time Innovations, Inc.

#3 Powerful Services

Included in the Standard:
– Discovery
– Ownership, Redundancy & Failover
– Persistence (Durable) Data
– Last value and historical caches

Enabled by the DDS protocol:
– Recording service
– Routing Service

© 2009 Real-Time Innovations, Inc.

Discovery Service

DDS provides the means for an application to discover
other participants on the Domain
– And the Topics the Publish and Subscribe
– And the Quality of Service of the remote endpoints

A participant can determine who it is communicating
with…
– And selectively decide who to communicate with…

shapes_demo discovery_in_excel

© 2009 Real-Time Innovations, Inc.

Ownership and High Availability

Owner determined per subject
Only extant writer with highest strength can publish a subject (or topic for
non-keyed topics)
Automatic failover when highest strength writer:

– Loses liveliness
– Misses a deadline
– Stops writing the subject

Shared Ownership allows any writer to update the subject

Producer / Writer
strength=10

Topic T1

I1 I2
Producer / Writer

strength=5

Producer / Writer
strength=1

I1 Primary

I1 Backup
I2 Primary

I2 Backup

Start demo

© 2009 Real-Time Innovations, Inc.

Data Persistence

A standalone service that persists data outside of the
context of a DataWriter

Data
Writer

Global
Data Space

Data
Reader

Persistence
Service

Persistence
Service

Data
Reader

Data
Writer

Permanent
Storage

Permanent
Storage

Can be configured for:

• Redundancy

• Load balancing

Demo:
1. PersistenceService
2. ShapesDemo
3. Application failure
4. Application (ShapesDemo) re-start

© 2009 Real-Time Innovations, Inc.

Persistent Data Service

Modes:
– High-performance “direct” model. Data flows in directly to subscribers and to the

persistent service
– Transactional “relay” mode persists first, then sends to subscribers

Fault-tolerant: Redundant services are supported
Data

Writer

Persistence
Service

Persistence
Service

Data
Reader

Data
Reader

Redundant

Service

Data
Writer

Persistence
Service

Data
Reader

Data
Reader

Direct

Mode

Data
Writer

Persistence
Service

Data
Reader

Data
Reader

Relay

Mode

© 2009 Real-Time Innovations, Inc.

Durable Writers

Durable Writers keep their history cache
in permanent storage

Upon re-starts they automatically rebuild
their history from storage

New messages will automatically be
appended to the history

Readers will treat the writer re-start as a
“temporary” disconnect

Automatically-assigned sequence
numbers ensure no messages are
dropped or duplicated

Application

Permanent
Storage

write

To Readers

Msg(GUID, SN)

© 2009 Real-Time Innovations, Inc.

Durable Readers

Durable Readers Keep information on
the messages read on permanent
storage

Information uniquely identifies each
message

Upon re-start they automatically load
information so they only request new
messages and avoid duplicates

Combined with the other services it
can guarantee exactly-once delivery

Application

From Writers

read

Permanent
Storage

Msg(GUID, SN)

© 2009 Real-Time Innovations, Inc.

Last value cache

A last-value cache is already built-in into every Writer in
the system
– Can used in combination with a Durable Writer

A late joiner will automatically initialize to the last value

Last value cache can be configure with history depth
greater than 1

The Persistence Service can be used to provide a last
value cache for durable data

© 2009 Real-Time Innovations, Inc.

Historical cache

A partial historical cache is already built-in into every Writer in the
system
– Can used in combination with a Durable Writer

The Persistence Service can be used to provide a historical cache
with larger/unlimited depth

A late joiner will automatically initialize to the desired history
– Currently amount of history can only be specified as message count.
– Next release will also allow a age/time based specification.

Request for historical cache is done by creating a Reader with the
desired history depth specified as a QoS

Start demo

© 2009 Real-Time Innovations, Inc.

DDS Real-Time Recording Service

Applications:
– Future analysis and

debugging
– Post-mortem
– Compliance checking
– Replay for testing and

simulation purposes

Record high-rate data arriving
in real-time

Non-intrusive – multicast
reception

Demo:
1. Start RecorderService
2. Start ShapesDemo
3. See output files
4. Convert to: HTML XML CSV
5. View Data: HTML XML CSV

© 2009 Real-Time Innovations, Inc.

#4 Interoperability

Protocol
– Interoperability Wire protocol adopted in 2006

Languages: C/C++, Java, ADA, .NET

Systems/Platforms/Models
– Data distribution (publishers and subscribers): DDS
– Data management (storage, retrieval, queries): SQL
– ESB Integration, Business process integration: WSDL

DBMS

DBMSDBMS

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node SQL SQL

DDS SQL

DDSWSDL

D T

© 2009 Real-Time Innovations, Inc.

#5 Natural with SOA building blocks

Real-Time
Devices Fault

Tolerance
Auditing &
Recording

Tools &
Visualization

Database

Event
Processing

Real-Time Pub-Sub/Caching/Messaging
SOA &

Real-Time
Web Services

WS-DDS

© 2009 Real-Time Innovations, Inc.

Relational Actions

Relational Database Integration

Topic T1

I1 I2 I3
I1
I2
I3

Table T1

Messaging Actions
Write()
Read() & Take()
Dispose()
Wait() & Listener

UPDATE & INSERT
SELECT
DELETE

Event driven – The fastest way to observe database
changes!

© 2009 Real-Time Innovations, Inc.

Complex Event Engine Integration

CEP: programmable engines used to transform “data” into “information”
CEP engines are programmed using a derivative of SQL
CEP engines save time: They can implement a lot of the application logic:

– Classification, Correlation, Aggregation, Filter, Cleansing, Pattern Detection, etc.

DDS is the perfect ‘data’ and ‘information’ pipe for CEP engines
– Use high-speed data streams (1,000-1,000,000 msg/sec)
– Require latency measured in sub-milliseconds
– Demand access to events from a heterogeneous systems

CEP Engine

Dashboards

Applications

Alerts

DDS

© 2009 Real-Time Innovations, Inc.

Web-Enabled DDS (upcoming spec)

Global
Data Space

RTI, DDS, Real-Time DDSParticipant

DDSParticipant

WebEnabled
DDS

Generic
Web Client

(.NET / Java)

SOAP
DDS-RTPS

HTTP

IONA
Web Client

IONA Artix Transports
SOAP, JMS, IIOP

Hi-Performance
Embedded
Real-Time

Web
Enabled
Protocols

© 2009 Real-Time Innovations, Inc.

Agenda

Context: Middleware Technologies

Overview: DDS Model & Applicability

Details: DDS in depth

© 2009 Real-Time Innovations, Inc.

Do-yourself Message-Centric System

Model
– 1-1, FIFO

Applications coupled in Lifespan & Content
– Both must be present simultaneously
– Everything sent is received

Excellent performance

Doesn’t scale
– To large-scale systems
– To loosely-coupled systems

Application Application

Queue co-located with each application

© 2009 Real-Time Innovations, Inc.

Middleware-based Message-Centric Systems (JMS)

Model
– Broker-based, n n communication
– Independent messages, No state

Coupling
– Not coupled in Lifespan
– Coupled in Order and Content (presentation)

Worse performance

Better scalability

Application Application

Global Queues
Queue per message kind

Application Application

© 2009 Real-Time Innovations, Inc.

Do-yourself Data-Centric System

Model
– Shared/replicated structured data/state
– Asynchronous, Selective sharing

Coupling:
– Coupled in Lifespan, Decoupled in Presentation & Content

Excellent performance & scalability

Application Application

Replication
Mechanism

© 2009 Real-Time Innovations, Inc.

Middleware-based Data-Centric Systems (DDS)

Shared data-space, shared state

Asynchronous communication

Decoupled in Lifespan, Content, presentation

Excellent performance & scalability

Subsumes Message-Centric via QoS

Application Application

© 2009 Real-Time Innovations, Inc.

DDS Data-Centric Model

Provides a virtual “Global Data Space” that is accessible to all
interested applications.
– Data objects addressed by DomainId, Topic and Key
– Subscriptions are decoupled from Publications
– Contracts established by means of QoS
– Automatic discovery and configuration

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Data Object

KeyTopic

© 2009 Real-Time Innovations, Inc.

DDS Global Data

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Address in Global Data Space = (DomainId, Topic, Key)
– Each topic corresponds to a multiple data instances with a common schema
– A DataWriter can write to any instances of a single topic
– Multiple DataWriters may write to the same instance
– A DataReader receives updates from all instances of a single topic
– Multiple DataReaders may read from the same instances & values

© 2009 Real-Time Innovations, Inc.

DDS Global Data: Domains

Address in Global Data Space = (DomainId, Topic, Key)
– Each Domain is identified by the value of the domainId
– Each Domain is a separate Global Data Space

• The same Topic name can mean different things in different domains
• The same Topic can have different Types on each Domain

– An application may join multiple Domains
– Domains can be used for isolation, scalability, modularity

© 2009 Real-Time Innovations, Inc.

Example: Publication

// Entities creation
DomainParticipant participant =

TheParticipantFactory->create_participant(
domain_id, participant_qos, participant_listener);

Publisher publisher = domain->create_publisher(
publisher_qos, publisher_listener);

Topic topic = domain->create_topic(
“MyTopic”, “Text”, topic_qos, topic_listener);

DataWriter writer = publisher->create_datawriter(
topic, writer_qos, writer_listener);

TextDataWriter twriter = TextDataWriter::narrow(writer);

TextStruct my_text;
twriter->write(&my_track);

© 2009 Real-Time Innovations, Inc.

Example: Subscription

// Entities creation
Subscriber subscriber = domain->create_subscriber(

subscriber_qos, subscriber_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create_datareader(
topic, reader_qos, reader_listener);

// Use listener-based or wait-based access

© 2009 Real-Time Innovations, Inc.

How to Get Data? (Listener-Based)

// Listener creation and attachment
Listener listener = new MyListener();
reader->set_listener(listener);

// Listener code
MyListener::on_data_available(DataReader reader)
{

TextSeq received_data;
SampleInfoSeq sample_info;
TextDataReader reader = TextDataReader::narrow(reader);

treader->take(&received_data, &sample_info, …)
// Use received_data
printf(“Got: %s\n”, received_data[0]->contents);

}

© 2009 Real-Time Innovations, Inc.

How to Get Data? (WaitSet-Based)
// Creation of condition and attachement
Condition foo_condition =

treader->create_readcondition(…);
waitset->add_condition(foo_condition);

// Wait
ConditionSeq active_conditions;
waitset->wait(&active_conditions, timeout);

// Wait returns when there is data (or timeout)
FooSeq received_data;
SampleInfoSeq sample_info;

treader->take_w_condition
(&received_data,
&sample_info,
foo_condition);

// Use received_data
printf(“Got: %s\n”, received_data[0]->contents);

© 2009 Real-Time Innovations, Inc.

Listeners, Conditions & WaitSets

Middleware must notify user application of relevant events:
– Arrival of data
– But also:

• QoS violations
• Discovery of relevant entities

– These events may be detected asynchronously by the middleware
… Same issue arises with POSIX signals

DDS allows the application to choice:
– Either to get notified asynchronously using a Listener
– Or to wait synchronously using a WaitSet

Both approaches are unified using STATUS changes

© 2009 Real-Time Innovations, Inc.

Status Changes
DDS defines

A set of enumerated STATUS
The statuses relevant to each kind of DDS Entity

DDS entities maintain a value for each STATUS

DataWriterPUBLICATION_MATCH

DataWriterOFFERED_INCOMPATIBLE_QOS

DataWriterLIVELINESS_LOST

DataReaderSUBSCRIPTION_MATCH

DataReaderSAMPLE_LOST

DataReaderDATA_AVAILABLE

DataReaderRUQESTED_INCOMPATIBLE_QOS

DataReaderREQUESTED_DEADLINE_MISSED

DataReaderLIVELINESS_CHANGED

SubscriberDATA_ON_READERS

TopicINCONSISTENT_TOPIC

EntitySTATUS

struct LivelinessChangedStatus
{

long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

}

© 2009 Real-Time Innovations, Inc.

Listeners, Conditions and Statuses

A DDS Entity is associated with:
– A listener of the proper kind (if attached)
– A StatusCondition (if activated)

The Listener for an Entity has a separate operation for each of the relevant
statuses

on_inconsistent_topicTopicINCONSISTENT_TOPIC

on_data_on_readersSubscriberDATA_ON_READERS

on_sample_lostDataReaderSAMPLE_LOST

on_subscription_matchDataReaderSUBSCRIPTION_MATCH

on_publication_matchDataWriterPUBLICATION_MATCH

on_offered_incompatible_qosDataWriterOFFERED_INCOMPATIBLE_QOS

on_liveliness_lostDataWriterLIVELINESS_LOST

on_data_availableDataReaderDATA_AVAILABLE

on_requested_incompatible_qosDataReaderRUQESTED_INCOMPATIBLE_QOS

on_requested_deadline_missedDataReaderREQUESTED_DEADLINE_MISSED

on_liveliness_changedDataReaderLIVELINESS_CHANGED

Listener operationEntitySTATUS

© 2009 Real-Time Innovations, Inc.

Listeners & Condition duality

A StatusCondition can be selectively activated to respond to
any subset of the statuses

An application can wait changes in sets of StatusConditions
using a WaitSet

Each time the value of a STATUS changes DDS
– Calls the corresponding Listener operation
– Wakes up any threads waiting on a related status change

Asynchronous notification
via Listener operation

Synchronous notification
via activation/wakeup of

conditions/waitsets

DDS
EntityStatus Change

© 2009 Real-Time Innovations, Inc.

Hands-on Example (C++)

Type
Definition

MyType

rtiddsgen

MyType.h

MyTypeSupport.c MyTypePublisher.cpp

MyTypeSubscriber.cpp

MyType.sln

Publisher.exe Subscriber.exe

Four easy steps:
1. Define your data
2. Create your project
3. Build
4. Run: publisher subscriber

Aux:
File Browser
Console

compiler

© 2009 Real-Time Innovations, Inc.

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

© 2009 Real-Time Innovations, Inc.

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

Domain Modeling
& Sys. Design

Config &
Qos

© 2009 Real-Time Innovations, Inc.

Designing a Data-Centric System

Define/Model the Global Data Space

Configure the Cache Management

Configure Discovery

Configure the Protocol

Configure/Use hooks for
– Fault detection
– Controlled access

© 2009 Real-Time Innovations, Inc.

Global Data Space / Global State

Identify the number of domains

Domain Information model
– Topics
– Types
– Keys
– Ownership

© 2009 Real-Time Innovations, Inc.

Domain and Domain Participants

N1 App 1
Pub/Sub
(A,B/C,D)

N2 App 2
Subscribe

(C)

N4 App 4
Pub/Sub
(D/C,E,F)

N4 App 5
Publish

(C)

N3 App 3
Pub/Sub
(E,F/A,C)

N5 App 6
Subscribe

(B,C)

Domain

Single ‘Domain’ System

• Container for
applications that
want to communicate

• Applications can
join or leave a
domain in any order

• New Applications
are “Auto-Discovered”

• An application that
has joined a domain
is also called a
“Domain Participant”

© 2009 Real-Time Innovations, Inc.

Domain and Domain Participants

Node 1 - App 1
Pub/Sub

Node 2 - App 1
Subscribe

Node 4 - App 1
Pub/Sub

Node 4 - App 2
Publish

Node 3 - App 1
Pub/Sub

Node 5 - App 1
Subscribe

Domain A

Node 5 - App 2
Pub/Sub

Node 6 - App 1
Pub/Sub

Domain B

Domain C
Added Func.

Multiple Domain System

Using Multiple domains for Scalability, Modularity & Isolation

demo_domain_0 demo_domain_1

© 2009 Real-Time Innovations, Inc.

Topics & Datatypes, Keys & Subjects

171.20

118.30

bid

200000

volume

EQRTFP

171.28NASDAQAAPLOPRA

118.36NYSEIBMOPRA

askExchangesymboltypesource

11958

11957

11956

Order num

SELL

BUY

BUY

type

500

number

160

124

-

stop

-

124.5

120

limit

400

1000

DAYAAPLNASDAQ

DAYIBMNYSE

DAYIBMNYSE

expirationSymbolExchange

Topic “MarketData”

Topic “OrderEntry”

Key fields Subject Additional fields (payload)

Data-type (name-type-value pairs)

Subject Key fields demo_filters

© 2009 Real-Time Innovations, Inc.

QoS: Ownership

Data
Writer

Ownership = EXCLUSIVE
“Only highest-strength
data writer can update
each data-instance”

Data
Writer

Data
Writer

Ownership = SHARED
“All data-writers can
each update data-
instance”

Specifies whether more than one DataWriter can
update the same instance of a data-object

Data-
Instance

Data
Writer

Data
Writer

Data
Writer

Data-
Instance

Provides fast, robust, transparent replacement for fail-
over and/or take-over.

© 2009 Real-Time Innovations, Inc.

After QoS Expires
- Deadline
- Liveliness

QoS: Ownership Strength

OWNERSHIP_STRENGTH
“Integer to specify the
strength of an instance”ORDER

Data
Reader

Subscriber

Domain
Participant

Data
Writer

“LEFT”

Publisher

Strength = 1

Data
Writer

“RIGHT”

Publisher

Strength = 4

“LEFT”

Note: Only applies to Topics with Ownership = Exclusive

Specifies which DataWriter is allowed to update the
values of data-objects

“RIGHT”

S SS

demo_ownership

© 2009 Real-Time Innovations, Inc.

Configure the Cache Management

Cache State Content
– History
– Lifespan
– Persistence
– Resources

Reader Cache View
– Partitions
– Content-Based Filter
– Time-Based Filter
– Order

Writer
Application

Reader
Application

© 2009 Real-Time Innovations, Inc.

Data
Writer

Publisher

S1

S3
S2

S4
S5
S6
S7

Keep All

Subscriber

S4
S5
S6
S7

Data
Reader

Keep Last 4

QoS: History – Last x or All

KEEP_LAST: “depth” integer for
the number of samples to keep at
any one time

KEEP_ALL:
Publisher: keep all until delivered
Subscriber: keep each sample until the
application processes that instance

Publisher

Keep Last 2

Data
Writer S6

S7

S7 S6 S5 S4 S3 S2 S1

demo_history

© 2009 Real-Time Innovations, Inc.

QoS: Lifespan

SubscriberPublisher

Topic

Data
Reader

User can set lifespan duration
Manages samples in
the history queues, attached to each
Sample

Data
Writer

S7

S5
S6

S4
S3
S2
S1

Perm.
Storage
S1 S2

S4 S3 S2 S1

lifespan_pub

lifespan_sub

© 2009 Real-Time Innovations, Inc.

Content-Based Filtering

Content Filtered
Topic

“Filter Expression ”
Ex. Value > 260

Value = 249Instance 1

Value = 230Instance 2

Value = 275Instance 3

Value = 262Instance 4

Value = 258Instance 5

Value = 261Instance 6

Value = 259Instance 7

The Filter Expression and Expression
Params will determine which instances of the
Topic will be received by the subscriber.

Topic

content_filter_example

© 2009 Real-Time Innovations, Inc.

Topic: “Market Data”

Subject Filter (for a Reader)

Field

Value

Symbol Type Exchange
Payload

* * NYSE *

Subject Filter (for a Reader)

SourceField

Value

Symbol Type Exchange Payload

REUTERS * EQ NYSE Volume > x, Ask < y

Payload Filter (for a Reader)

Topic: “Order Entry”

Topic: “Market Data”

Subscriptions: By Topic, Subject, Content

Symbol OrderKind Stop Limit

SourceField

Value

Symbol Type Exchange
Payload

* * * * *

Volume Bid Ask …

OrderNumber …

content_filter_example

© 2009 Real-Time Innovations, Inc.

QoS: TIME_BASED_FILTER

Domain
Participant

Data
Writer

Topic

Publisher

SS S S S

minimum separation

Data
Reader

Subscriber

Data Samples

“minimum_separation”:
Data Reader does not want to receive data
faster than the min_separation time

SS

Discarded
samples

time_filter_example

© 2009 Real-Time Innovations, Inc.

Cache Management in Action

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

• Color is instance Key
– Key

• Color field used for key

QoS
– History, Partition
– Time-Based Filter
– Content-Based Filter

demo

© 2009 Real-Time Innovations, Inc.

Configure the Protocol

Discovery

Reliability

Liveliness

Flow Control

Asynchronous write

Network Configuration
– Enabled Transports +

transport properties
– Multicast addresses
– Transport Priority

OS settings
– Threads
– Memory

Writer
Application

Reader
Application

© 2009 Real-Time Innovations, Inc.

Tunable Reliability Protocol
Configurable AckNack reply times
to eliminate storms

Fully configurable to bound
latency and overhead

– Heartbeats, delays, buffer sizes

Reliable
•Guaranteed
Ordered Delivery

•“Best effort” also
supported

Performance can be tracked by
senders and recipients

– Configurable high/low watermark,
Buffer full

Flexible handling of slow
recipients

– Dynamically remove slow
receivers

SubscriberPublisher

Data
Reader

Data
Writer

S1

S3
S2

S4
S5
S6
S7

S7

S5
S6

S4
S3
S2
S1

S8 S7 S3 S5 S4 S2 S1

NACK #6
S6

© 2009 Real-Time Innovations, Inc.
Company Confidential

Best Efforts

01

02
03

04

01
02
03
04

01
02

X
04

05

06
07

08

05
06
07
08

05
06

07
08

© 2009 Real-Time Innovations, Inc.
Company Confidential

Confirmed Reliability I
No packet loss

01

02
03

04

01
02
03
04, HB

01
02

03
04ACK 1-4

05

06
07

08

05
06
07
08, HB

05
06

07
08ACK 1-8

© 2009 Real-Time Innovations, Inc.
Company Confidential

Confirmed Reliability II
Some packet loss

01

02
03

04

01
02
03
04, HB

01
02

X
04ACK 1-2, NACK 3

05

06
07

08

05
06
07
08, HB

05
06

07
08ACK 1-8

03

© 2009 Real-Time Innovations, Inc.

Configure Notifications, Fault Detection &
Management

Listeners

Deadline Qos

Liveliness Qos

Built-in Readers

Notification of matching

Writer
Application

Reader
Application

© 2009 Real-Time Innovations, Inc.

QoS: Deadline

Topic

Publisher

Data
Writer

Subscriber

Data
Reader

DEADLINE “deadline period”

deadline

Commits
to provide
data each
deadline
period.

Expects data every
deadline period.

S X S S S S S

Listener

Failed to
get data

deadline_example

© 2009 Real-Time Innovations, Inc.

QoS: Liveliness –
Type and Duration

Data
Writer

Topic

Publisher

lease_duration

Data
Reader

Subscriber

Listener

Liveliness Message

Type: Controls who is responsible for issues of ‘liveliness packets’
AUTOMATIC = Infrastructure Managed
MANUAL = Application Managed

Failed to
renew
lease

LP LP LP S

Topic

liveliness_example

kill_apps

© 2009 Real-Time Innovations, Inc.

Summary

Designing a fault-tolerant high-performance distributed
system is not a simple task

A powerful middleware framework can provide a lot of
value and help you focus on the business logic

The middleware can save you a lot of time and effort.
– It is worth learning how to use its power!

